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Based on Clar aromatic sextet theory [Clar, The Aromatic Serxtet (Wiley, New York,
1972)] and the concept of sextet polynomial introduced by Hosoya and Yamaguchi
[Mathematical Concepts in Organic Chemistry (Springer, Berlin, 1986)], we define a new
ordering of benzenoid systems. For two isomeric benzenoid systems B1 and B2, we say
B1 > B2 if each coefficient of sextet polynomial of B1 is no less than the correspond-
ing coefficient of sextet polynomial of B2. In this paper, we consider the ordering of
the benzenoid chains. The maximal and second maximal benzenoid chains as well as
the minimal, the second minimal up to the fourth minimal benzenoid chains are deter-
mined. Furthermore, under this ordering, we determine the maximal and second max-
imal cyclo-polyphenacenes as well as the minimal, the second minimal, and up to the
seventh minimal cyclo-polyphenacenes.

1. Introduction

Since many benzenoid hydrocarbons have been found from the
high-temperature carbonization coal tar, these plane compounds with condensed
benzene rings have been extensively studied in the last centenary. After the first
monograph of Clar [1], several books and papers were published (see [2–6] and
the references cited therein). The simplest benzenoid hydrocarbons are benzenoid
chains (polyphenacenes). Up to now, many benzenoid chains have been prepared
[1,7] and many theoretical and computational work has been done [8–10].
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After the discovery of carbon nanotube [11], the nonplane compounds with
condensed benzene rings became an attractive topic for chemists and physi-
cians, since it is expect that the carbon nanotube as an artificial material has
nice electrical conductivity and strength. For details, (see [12] and the references
cited therein). Stimulated by this fact, many researchers considered the tubulene
[13–15]. The carbon skeleton of a tubulene is a benzenoid system embedded in
a cylinder with two open ends (all its dangling bonds at both ends saturated
with hydrogen atoms). The simplest tubulene is said to be prim which can be
considered as a benzenoid chain embedded around a cylinder. To our knowl-
edge the synthetic attempts have fail to prepare a monomeric prim tubulene.
Although a similar type of hydrocarbons prim coronenes (prim coronoids) is
prepared many years ago [16]. On the other hand, the theoretical interest has
been high in recent years. For details see [17–19] and references cited therein.
As pointed out by some authors these molecules exhibit a renew interest owing
to their close similarity to short carbon nanotubes”. In fact prim tubulene is
the simplest compounds with condensed benzene ring on the cylinder. In most
of these studies the structures were built by optimization and abinitio calcu-
lation were carried out by advance programs. It is natural to expect that the
results obtained in this way is accurate enough comparing with the experimental
data available and could be a useful aid in the broader field of chemistry in the
future. Along this line the results of cyclo-polyphenacenes (a wide type of mole-
cules including prim tubulenes and prim coronenes) are obtained by Dobrowol-
ski [20], the results of cyclo-polyacenes are obtained by Honk et al. [17], Choi
and Kim [18] and Turker [19]. Note that all of these authors only considered
cyclo-polyphenacenes with small number of hexagons.

Another approach is to study the cyclo-polyphenacenes by using some
invariant. For example, Misra and Klein introduced the invariant combinato-
rial cuvature and considered its plausible relation to structural stresses, as man-
ifested in thermodynamic stability [21]. Different from the other authors, Misra
and Klein considered the case of cyclo-polyphenacenes with arbitrary number of
hexagons, which is the case we are interested in.

In this paper, we will consider the application of Clar’s aromatic sextet the-
ory (see [1]) and the concept of sextet polynomial [22] which has been exam-
ined in different ways (see [23] and references cited therein) in recent years. In
order to compare the stability we introduce a new quasiodering to rank benze-
noid chains and cyclo-benzenoids with respect to their number of Clar aromatic
sextets.

The problem of defining orderings according to some chemical or physical
properties has attracted attention of a number of chemists, since it concerned a
basic problem – the structure-property relations in chemistry. For details, see two
surveys [24,25] whcih published in recent years.

The main task of this paper is to consider the benzenoid chains and cyclo-
polyphenacenes. We determine the maximal and second maximal benzenoid
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chains as well as the minimal, the second minimal up to the fourth mini-
mal benzenoid chains under our ordering. We also solve the extreme prob-
lem for cyclo-polyphenacenes and determine the maximal and second maximal
cyclo-polyphenacenes as well as the minimal, the second minimal, and up to the
seventh minimal cyclo-polyphenacenes.

2. Benzenoid chains

Benzenoid systems are the graph representation of benzenoid hydrocarbons
using the language of graph theory which is a finite connected plane graph with-
out cut vertices in which every interior face is bound by a regular hexagon of
side length one. A benzenoid chain is a benzenoid system whose each hexagon
is adjacent to at most two hexagons. Clearly, benzenoid chain is the simplest type
among all benzenoid hydrocarbons.

Now we recall the concept in Clar’s aromatic sextet theory [1]. Let B be
a benzenoid system with Kekule structures (perfect matching). A Clar aromatic
sextet is a set of disjoint hexagons such that the remainder of the benzenoid
system obtained by deleting the vertices of these hexagons must have a Kekule
structure or must be empty. A set of Clar aromatic sextets is said to be a Clar
formula if it has the maximum number of hexagons which is called the Clar
number. Clar’s theory asserts that for two benzenoid systems B1 and B2, if the
Clar number of B1 is greater than that of B2, then B1 is more stable. Since
many isomers of benzenoid chains have the same Clar number, the acurracy is
not enough to order the benzenoid chains (in general) with respect to their Clar
numbers. We will denote the number of Clar aromatic sextets of B having i hexa-
gons by s(B, i) and denote the Clar number of B by C(B) The following sextet
polynomial has been defined by Hosoya and Yamaguchi (see [22] and the excel-
lent survey in [5] p. 255) for benzenoid system:

S(B, x) =
C(B)∑

i=0

s(B, i)xi,

where S(B, 0) = 1.
Stimulated by the concept of the Clar aromatic sextet theory and sextet

polynomial, for a benzenoid system, Herhdon and Hosoya [26] calculated the
resonance energies by using the number of Clar aromatic sextets. Hence, it is nat-
ural to define a quasi-order which will have better accuracy as follows.

If for two benzenoid systems B1 and B2, s(B1, k) � s(B2, k), k = 0, 1, . . . ,
then we say B1 is s-greater than B2 and write B1 > B2. If both B1 > B2 and
B2 > B1 hold, then B1 and B2 are said to be equivalent. If neither B1 > B2 nor
B2 > B1 holds then B1 and B2 are incomparable. Clearly two s-equivalent has
the same sextet polynomial, but need not to be isomorphic (see for example B4

and B5 in figure 4). All our work is based on this ordering.
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Now we consider another quasi-ordering of graphs with respect to their
matching number introduced by Hosoya [27] and Gutman [28]. Let m(G, i) be
the number of i-matching of G that is the number of selections of i independent
edges in G. As usual we define m(G, 0) = 1 for all G. The counting polynomial
of i-matching is called matching polynomial which can be defined as follows:

M(G, x) =
m(G)∑

k=0

m(G, i)xn−2k,

where m(G) is the size of maximum matching of G.
If for two graphs G1 and G2 the relations m(G1, i) � m(G2, i) are fulfilled

for all k, then we say that G1 is m-greater than G2 and write G1 � G2 or G2 ≺
G1. If both G1 � G2 and G2 � G1 hold, then G1 and G2 have the same matching
polynomial but need not to be isomorphic (for example triangle and star with
four vertices) and we say G1 and G2 are m-equivalent. If G1 and G2 are not m-
equivalent and G1 � G2, then we say G1 is greater than G2 strictly. If neither
G1 � G2 nor G2 � G1 holds, then G1 and G2 is said to be incomparable.

Many years ago, Gutman found an interesting relation between sextet poly-
nomial of a benzenoid chain and the matching polynomial of its corresponding
Gutman (caterpillar) tree (see [29]). Based on this relation, we can order the ben-
zenoid chains with respect to their Clar aromatic sextets.

In graph theory a caterpillar tree T is defined to be the graph when all its
end vertices are deleted the residual is a path. In other words, let v1, v2, . . . , vm

be a path if we join each of ni new vertices to the vertex vi by an edge, i = 1,
2, . . . , m, then a caterpillar tree is obtained. Let B be a benzenoid chain its cor-
responding Gutman tree is defined as follows: For each end hexagons and ann-
ulated hexagons and end hexagons of B, an edge is corresponded which joins to
be a path successively. If there are ni (linear annulated) hexagons between the
hexagon corresponding to the successive edge vi−1vi and vivi+1, then we join ni

new vertices to vi each by an edge (see figure 1). Let B be a benzenoid chain
and G its corresponding Gutman tree (see [29] and the excellent survey in [5] pp.
273–289) showed that

S(B, k) = m(G, k),

where m(G, k) is the number of k-matching of G.
Thus we have

Theorem 2.1. Let B1 and B2 be two benzenoid chains with the same number of
hexagons and G1 and G2 are the Gutman trees of B1 and B2, respectively. Then
B1 > B2 if and only if G1 � G2.

Since the characteristic polynomial of a tree is also its matching polynomial,
in [28] Gutman determined the extremal trees with respective their matching
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Figure 1. A benzenoid chain and its corresponding Gutman tree.

number. Fortunately, all the extremal trees are caterpillar trees, thus we give the
following lemma.

Lemma 2.2. Let �n be the set of caterpillar trees with n edges. If we order �n

with respective to their matching number, then

1. the maximal tree is Pn (n path) the second maximal tree is P ′
n showing

as in figure 2.

2. the minimal tree is star(T2) the second, . . . forth minimal trees are
T2, . . . , T4 as showing in figure 2.

Now we need some further concepts. Let G be a connected graph with per-
fect matchings. G is said to be k-cycle resonant if G contains at least k(� 1) dis-
joint cycles and, for 1 � t � k, any t disjoint cycles in G are mutually resonant,
that is, there is a perfect matching M of G such that the t disjoint cycles are
M-alternating cycles. For a 2-connected graph G, a path P in G is said to be a
chain if the degree of any end vertex of P is greater than two and the degree
of any middle vertex of P is equal to two in G. In [17], X.Guo and one of the
present author gave the following lemma.

Lemma 2.3. Let B a benzenoid system and k∗ be the maximal number of the
disjoint cycles in B. B is k∗-cycle resonant if and only if B is catacondensed ben-
zenoid system with no chain of even length (catacondensed benzenoid is the ben-
zenoid system – as a plane graph – without internal vertices).

In [30], it has been pointed out that k∗-cycle resonant systems have the
greatest resonance energies than the other benzenoid systems. This is true for
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Figure 2. Some Gutman trees and their corresponding benzenoid chains.

the logarithmic model [31] and the Randic’s conjugated circuit model [32]. Thus
the first conclusion of the following theorem is not surprise.

By lemmas 2.2 and 2.3 we have

Theorem 2.4. Let �n be the set of benzenoid chains with n hexagons. If we order
�n with respective to their Clar aromatic sextet, then

1. The maximal benzenoid chains are k∗-cycle resonant benzenoid systems.
The second maximal benzenoid chains are the benzenoid chains with
only two chains of even length located on the third hexagon and the
other chains are of odd length.

2. The minimal benzenoid chain is a linear chain B1. The second and third
minimal benzenoid chains are B2 and B3 respectively. Two s-equivalent
benzenoid chains B4 and B5 are the fourth as showing in figure 2.
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Now we give two remarks.

1. The result in this paper agrees with our previous results [33,24] obtained
by comparing the HMO π -energy. But now we get more minimal benze-
noid chains. The further advance quantum chemistry calculation is invited
to check the general mathematical results obtained by Clar’s theory.

2. Our approach for ordering the maximal benzenoid chain is not unique,
the result weaker than [34]. But we can find two kinds of benzenoid
chains which are more stable. This is the new information.

3. Cyclo-Polyphenacenes

The cyclo-polyphenacenes can be obtained by identifying two edges in two
end hexagons respective where each hexagon is adjacent to exactly two hexagons.
In this section we will use the code of Misra and Klein [21] to represent the
cyclo-polyphenacenes and the graph corresponding to its carbon skeleton. We
first mark a common vertex with degree 3 of the first and second hexagons and
then intracing along the boundary of the cyclo-polyphenacenes locate the num-
ber of vertices with degree two before the third hexagon. Clearly, when the sec-
ond hexagon is angular annulated the number is 0 or 2 and when the second
hexagon is linear annulated the number is 1 (say a1 = 0, 1, 2, respectively). Start-
ing from the second hexagon, we can define a2 in a similar way. Furthermore,
ai (i = 1, 2, . . . , n) can be defined inductively, where n is the number of hexa-
gons of the cyclo-polyphenacenes. Since any hexagon can be chosen as the first
and two directions of the upper and lower 2n cycle (two sides of the polyphenac-
enes) can be chosen, it is seen that up to 4n codes are conceivable. We view the
4n string of digits as ternary numbers and choose the smallest to correspond to
the canonical code [21]. It is easy to see that the code of a cyclo-polyphenacene
is 11 . . . 1 and a cyclo-polyphenathrene has the code 0202 . . . 02 (see figure 3).

Now we extend the concept in Clar’s aromatic sextet theory [1] to cyclo-
polyphenacenes. All the concepts (Clar number, sextet polynomial. . . ) are the
same as in section 2. In fact, we only need to change the words benzenoid sys-
tem to cyclo-polyphenacenes in all definitions.

Our quasi-ordering can be introduced as follows: if for two cyclo-
polyphenacenes B1 and B2, s(B1, k) � s(B2, k) are fulfilled for all k, where
S(Bi, k) is the number of i-matchings of Bi , then we say that B1 is s-greater
than B2 and write G1 > G2 or G2 < G2. If both B1 > B2 and B2 > B1 hold
then B1 and B2 are said to be s-equivalent, G1 ∼ G2. If B1 and B2 are not s-
equivalent and B1 > B2, then we say that B1 is s-greater than B2 strictly. Note
that two s-equivalent cyclo-polyphenacenes have the same sextet polynomial but
need not to be isomorphic. We will see that example later. Extending Clar’s the-
ory to cyclo-polyphenacenes, we assert that if two cyclo-polyphenacenes B1 > B2



300 L. Wang et al. / Ordering of benzenoid chains

The carbon skeleton(graph) of
a cyclo-polyphenathrene.

The carbon skeleton(graph) of
a cyclo-polyacene.

Figure 3. Two cyco-polyphenacenes. For the sake of brevity, we do not distinguish a cyclo-
polyphenacene, its carbon skeleton and its graph.

strictly, then B1 is more stable. As the case of benzenoid systems, this ordering
has better accuracy than simply to compare the Clar number of isomers.

Now we define the generalized crown corresponding to a cyclo-polyphenac-
enes. A generalized crown C is a graph when all its end vertices (the vertices with
degree 1) are deleted, the residual is a cycle. In other words, let v1, v2, . . . , vn

be the vertices of a cycle. If we join each of mi new vertices by an edge to the
vertices vi , for 1 � i � n, then a generalized crown is obtained. For a cyclo-po-
lyphenacenes B, using the code of Klein we can define a corresponding crown as
follow: each of the hexagons with code 0 or 2 corresponding to an edge which
join to be a cycle successively (say v1, . . . , vn). For all i, if there are sole ni

(where ni may be zero) hexagons with code 1 lying between the hexagons cor-
responding the edge (vi−1vi) and (vi, vi+1) then we take ni new vertices and join
each of them to vi by an edge (see figure 4).

Inspiring by the results of Zhang et al. [35] we have the following lemma.

Lemma 3.1. Let B be a cyclo-polyphenacenes and G be its corresponding gener-
alized crown. The number of Clar aromatic sextets having precisely i hexagon of
B is equal to the number of i-matching of G.

The details of the proof of this lemma see appendix A.
Bearing in mind the quasi-ordering “�” of graphs with respect to their

matching numbers (see [36]), by lemma 3.1 we have:

Theorem 3.2. Let B1 and B2 be two cyclo-polyphenacenes with the same number
of hexagons and C1 and C2 are their corresponding generalized crown, respec-
tively. Then B1 > B2 (strictly) if and only if C1 � C2 (strictly).

Theorem 3.2 reduces the ordering problem of cyclo-polyphenacenes with respective
to their number of Clar aromatic sextets to the ordering problem of general crown
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Figure 4. Five cyclo-polyphenacenes and their corresponding generalized crowns.

with respective to their matching numbers. Now, we need some further prepara-
tions about the second problem.

Let u and v be two vertices of the graph G, then G(u, v)(m, n) denotes the
graph obtained from G by joining m new pendant vertices to the vertex u and
by joining n additional new pendant vertices to the vertex v.

Two vertices u and v of the graph G will be called equivalent if the sub-
graphs G−u and G−v are isomorphic. The following result is proved by Gutman
and one of the present authors [36].

Lemma 3.3. If the vertices u and v of graph G are equivalent, then

G(u, v)(o, n) ≺ G(u, v)(1, n − 1) ≺ · · · ≺ G(u, v)(�n/2�, n − �n/2�),

where �.� is the floor function.
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Lemma 3.4. Let C be a generated crown, u is a pendant vertex of C and (u, v)
an edge of C ( v is on the cycle of C). C ′ is the crown obtained from C by delet-
ing the vertex u and split the vertex v to an edge (v, v′) to enlarge the cycle of
C. Then C ′ � C.

Proof. Let us consider the k-matchings of C and C ′. We claim that the num-
ber of k-matchings of C containing the edge (u, v) is equal to the number of
k-matchings of C ′ containing the edge (v, v′). In fact C − {u} − {v} (the graph
obtained by deleting the vertices u and v in C) is isomorphic to C ′ − {v} − {v′}
and the other edges of these two k-matching are taken from C − {u} − {v} and
C ′ − {v} − {v′} respectively. Note that the other k-matchings of C are all the k-
matchings of C − {(u, v)} (the graph obtained by deleting the edge (u, v) in C)
and the other k-matchings of C ′ are all the k-matchings of C ′ − {(v, v′)}. Since
C − {(u, v)} can be obtained from C ′ − {(v, v′)} by identifying the vertices v and
v′ and adding an isolated vertex, then each k-matching of C − {(u, v)} can be
considered as a k-matching of C ′ − {(v, v′)}. Thus the number of k-matching of
C − {(u, v)} is no more than the number of k-matching of C ′ − {(v, v′)}. Com-
bining this result with the previous claim, the lemma 3.4 is proved.

Denote by �n the set of cyclo-polyphenacenes with n(� 4) hexagons using
the codes, we have

Theorem 3.5. If the elements of �n are ordering with respect to their number of
Clar aromatic sextet then the minimal, second minimal, and third minimal ele-
ment are

111 . . . 1 < 011 . . . 1 < 011 . . . 12 ∼ 0011 . . . 1

the first two elements are unique and the inequalities hold strictly.

Proof. The cyclo-polyacenes with no Clar sextets are unique which is the mini-
mal element of �n with the code 11 . . . 1 (see figure 3). Note that in �n the ele-
ment B2 with the code 011. . . 1 is the unique cyclo-polyphenacenes with only one
angular annulated hexagon (see figure 4). B2 has n−1 Clar aromatic sextet with
one hexagon and has no other Clar aromatic sextets. But the other elements in
�n has exactly n Clar aromatic sextets. Thus B2 is the second minimal element
in �n. Considering the corresponding crown, by lemma 3.4, the element B3 with
the code 011. . . 12 and B4 with the code 0011. . . 1 are the minimal elements in
�n with two angular annulated hexagons (see figure 4). B3 and B4 have n Clar
aromatic sextets and no other Clar aromatic sextets. But in �n −{B1, B2, B3, B4}
each element has n Clar aromatic sextet, and at least one Clar aromatic sextets
has two hexagons. In fact their corresponding general crowns have either k(> 2)-
cycle or 2-cycle in the second case the minimum degree of the vertices on the
cycle is 3. Therefore they have at least a 2-matching. Thus B3 or B4 is the third
minimal elements in �n. Obviously the inequalities hold strictly.



L. Wang et al. / Ordering of benzenoid chains 303

Lemma 3.6. If �n are ordering with respect to their number of Clar aromatic
sextet (see figure 3), then

1. the corresponding generalized crown of the fourth minimal elements in
�n are C2(u, v)(n − 3, 1) and C3(u, v)(n − 3, 0);

2. the corresponding generalized crown of the fifth minimal element in �n

is C2(u, v)(n − 4, 2);

3. the corresponding generalized crown of the sixth minimal element in �n

is C3(u, v)(n − 4, 1);

4. the corresponding generalized crown seventh minimal element in �n is
C4(u, v)(n − 4, 0)

and the following inequalities hold strictly:

C2(u, v)(n − 3, 1) ∼ C3(u, v)(n − 3, 0) ≺ C2(u, v)(n − 4, 2) ≺ C3(u, v)(n − 4, 1)

≺ C4(u, v)(n − 4, 0).

Proof. By theorem 3.2 we need to compare the coefficients of the matching
polynomials of the elements in �n − {B1, B2, B3, B4}. Recall that the matching
polynomial can be defined as follows:

M(G, x) =
m(G)∑

k=0

(−1)km(G, k)xn−2k,

where m(G, k) is the number of k-matchings that is the number of selections of k

independent edges in G and m(G) is the size of maximum matching of G. From
the proof of Theorem 3.5, we can see that the fourth minimal element of �n have
at least two angular annulated hexagons. Thus their corresponding generalized
crowns have a k(k > 1)−cycle. Now we have the following claims.

Claim 1. The matching polynomials of corresponding generated crowns of the
elements in �n with 2-cycle except B3 are

C2(u, v)(n − 3, 1) : xn − nxn−2 + (n − 3)xn−4,

C2(u, v)(n − 4, 2) : xn − nxn−2 + (2n − 8)xn−4,

C2(u, v)(n − 5, 3) : xn − nxn−2 + (3n − 15)xn−4.

. . .

By theorem 3.2 and lemma 3.3 the other elements in �n with two angular
annulated hexagons are greater than the first three.
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Claim 2. The matching polynomials of corresponding generated crowns of ele-
ments in �n with 3-cycle are

C3(u, v)(n − 3, 0) : xn − nxn−2 + (n − 3)xn−4,

C3(u, v)(n − 4, 1) : xn − nxn−2 + (2n − 7)xn−4,

C3(u, v)(n − 5, 2) : xn − nxn−2 + (3n − 13)xn−4.

By theorem 3.2 and lemma 3.3 the other elements in �n with three angular
annulated hexagons are greater than the first three.

Claim 3. The matching polynomial of the corresponding generalized crown
of the minimal element in �n with four angular annulated hexagons are
C4(u, v)(n − 4, 0) and its matching polynomial is xn − nxn−2 + (2n − 6)xn−6.

By theorem 3.2, lemmas 3.3 and 3.4 the other elements with more than four
angular annulated hexagons are greater than C4(u, v)(n − 4, 0).

Lemma 3.6 is now an immediate consequence of our claims.

Theorem 3.7. If �n is ordering as lemma 3.6 then

1. the codes of the forth minimal elements of �n are (see figure 5)

01011 . . . 1 ∼ 011 . . . 121 ∼ 00011 . . . 1 ∼ 011 . . . 102 ∼ 0011 . . . 12

2. the codes of the fifth minimal elements of �n are (see figure 5)

011011 . . . 1 ∼ 011 . . . 1211;
3. the codes of the sixth minimal elements of �n are (see figure 5)

001011 . . . 1∗ ∼ 0011 . . . 121∗ ∼ 01011 . . . 12 ∼ 011 . . . 1012;
4. the codes of the seventh minimal elements of �n are (see figure 5)

0011 . . . 122 ∼ 00011 . . . 12 ∼ 0011 . . . 102 ∼ 000011 . . . 1

∼ 00211 . . . 12 ∼ 011 . . . 1202.

Furthermore, in four sets in 1–4, any pair of elements in different sets are not
s-equivalent.

Proof. By lemma 3.6, we need only to consider the following cases:

1. 01011 . . . 1 and 011 . . . 121 are the codes of elements in �n correspond-
ing to the generalized crown C2(u, v)(n−3, 1). The other elements in case
1 corresponding to the generalized crown C3(u, v)(n − 3, 0).
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Figure 5. Five generalized crows and their corresponding cyclo-polyphenacenes.
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2. Two elements in case 2 corresponding to C2(u, v)(n − 4, 2).

3. Four elements in case 3 corresponding to C3(u, v)(n − 4, 1).

4. All elements in case 4 corresponding to C4(u, v)(n − 4, 0). The first four
elements are obtained by identifying two edges each in an end hexa-
gon of the same benzenoid chain. The other elements are obtained by
another benzenoid chain in a similar way.

The last conclusion follows from the last conclusion of lemma 3.6. The theorem
is thus proved.

Theorem 3.8. If �n is ordering as theorem 3.5, then

1. the corresponding generalized crown of maximal element in �n is a
n-cycle. The set of maximal elements of �n are the cyclo-polyphenacenes
whose digits of codes can only be 0 or 2.

2. the corresponding generalized crown of second maximal element of �n

is obtained by joining a pendant vertex to a n − 1 cycle. The set of sec-
ond maximal elements of �n are the cycle-polyphenacenes whose digits
of codes can only be 0 or 2 except a 1.

Proof. It is a immediate consequence of lemma 3.4 and theorem 3.2.
Our results agree with some known results such as

1. The cyclacenes (cyclo-polyacenecs) no longer have aromatic bond lengths
but rather structures resembling two weakly interacting schleyer “trannu-
lenes” which are circular, all-trans cyclic polyene ribbons [17]. In our the-
orem 3.5 cyclo-polyacene has no Clar acromatic sextex. It is the minimal
element of �n in our ordering.

2. The armchair carbon nanotube is the most stable one among the oth-
ers. The cyclo-polyphenatheren is closely similar to the shortest armchair
carbon nanotube. By theorem 3.8 it is in the set of maximal elements in
our ordering.

Note that if we order the cyclo-polyenacenes with respective to their Clar
number, we can not distinguish the second and third minimal elements in �n

since their Clar number are both 1. We can not distinguish the forth up to sev-
enth minimal elements also, since all their Clar number are 2.

How to distinguish the maximal elements in �n? This is a further problem.
Of course, we need to introduce another new ordering with better sensibility. We
suggest to compare the HMO π -energy (the sum of obsolute values of the graph
of a molecule) of cyclo-polyphonacenes. Inspiring by our previous result of bez-
enoid chains (see [33,34]), the following conjecture is proposed:
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Conjecture. In the set of cyclo-polyphenacenes with n hexagons the cyclo-
polyacene has the minimal π -energy and the cyclo-polyphenathrenes has the
maximal energy.

We believe that to compare the HMO π -energy can distinguish more ele-
ments in �n. On the other hand, to prove any conclusion mathematically is more
difficult.

Appendix A. The proof of lemma 3.1.

Lemma A.1. Let B be a cyclo-polyphenacenes and G be its corresponding gen-
eralized crown. The number of Clar aromatic sextets having precisely i hexagon
of B is equal to the number of i-matching of G.

Proof. Note that the inner-dual of B has as its vertices the centers of hexagon
of B where two vertices of B are connected by an edge if and only if the corre-
sponding hexagons are adjacent in B. When B has at least three angular annu-
lated hexagons, it is not difficulty to see that the inner-dual of B is isomorphic
to a subdivision of a polygon whose vertex is the centers of angular annulated
hexagons. We claim that a Clar aromatic sextets is a set of pairwise disjoint hexa-
gons such that there is at most one hexagon whose center is on a side of the
polygon. In fact if there are two such hexagons s2 and s2 whose centers are lying
on a side of the polygon then the hexagons intersected by the side and between
s2 and s2 together with s2 and s2 form a benzenoid chain L which has Clar num-
ber two which is a contradiction.

On the other hand, for the corresponding generalized crown C each vertex
of C with degree greater than 1 and its neighbors induce a star. Thus in any
matching of C there is at most one edge in a star can be chosen. By the defi-
nition of corresponding crown, each side of the previous polygon corresponding
to a star. From this fact we can easily to see that for any Clar aromatic sextets in
B with i hexagons the corresponding i edges in C is a matching and vice versa.
Thus there is a bijection between the Clar aromatic sextets in B with i hexagons
and the i-matching in C. The degenerated cases are:

• B has no angular annulated hexagon, then B is a cyclo-polyacenes which
has no Clar aromatic sextets, B corresponds to an empty graph which has
no k (k > 0)-matching (see the polyacene in figure 4 ).

• B has exactly one angular annulated hexagon, then B is corresponding to
a 1-cycle (loop) attaching some pendant vertices (a degenerated crown).
It is no difficulty to see that all the hexagons except the angular annulat-
ed one, say A1, are Clar aromatic sextet. Thus the number of Clar aro-
matic sextet of B having 1 hexagon is equal to n−1 which is the number
of the 1-matching of the corresponding degenerated crown. Furthermore,
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there is neither other Clar aromatic sextets in B nor k(> 1)-matching in
the corresponding degenerated crown. Thus the lemma is true in this case
(see figure 4).

• B has exactly two angular annulated hexagons and another hexagons
form two disjoint linear benzenoid chains (one of them may be empty).
The corresponding crown of B is a 2-cycle attaching some pendent ver-
tices to the vertices of the cycle respectively. It is no difficulty to see
that each hexagon of B is a Clar aromatic sextet and each pair of linear
annulated hexagons taking from the two linear benzenoid chains respec-
tively are Clar aromatic sextets with two hexagons. Furthermore, there is
no other Clar aromatic sextets. Comparing this fact with the number of
1-matching and 2-mathing of corresponding crown, the lemma is proved
in the case (see figure 4).
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